Single Inverter # **NL17SG04** The NL17SG04 MiniGate[™] is an advanced high-speed CMOS Inverter in ultra-small footprint. The NL17SG04 input structures provides protection when voltages up to 3.6 V are applied. ### **Features** - Designed for 0.9 V to 3.6 V V_{CC} Operation - 2.3 ns (Typ) at $V_{CC} = 3.0 \text{ V}$, $C_L = 15 \text{ pF}$ - Inputs/Outputs Over-Voltage Tolerant up to 3.6 V - I_{OFF} Supports Partial Power Down Protection - Available in SC-88A, SOT-953 and UDFN Packages - –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen–Free/BFR–Free and RoHS–Compliant Figure 1. SOT-953 (Top Thru View) Figure 2. SC-88A (Top View) 1 Figure 3. UDFN (Top View) Figure 4. Logic Symbol ### MARKING DIAGRAMS SC-88A DF SUFFIX CASE 419A SOT-953 CASE 527AE UDFN6 1.0 x 1.0 CASE 517BX UDFN6 1.45 x 1.0 CASE 517AQ XX = Specific Device Code = Date Code*= Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. | PIN ASSIGNMENT | | | | | |----------------|-----------------|----------|-----------------|--| | | SOT-953 | SC-88A | UDFN6 | | | 1 | Α | NC | NC | | | 2 | GND | А | А | | | 3 | NC | GND | GND | | | 4 | Υ | Υ | Υ | | | 5 | V _{CC} | V_{CC} | NC | | | 6 | | | V _{CC} | | ### **FUNCTION TABLE** | A Input | Y Output | |---------|----------| | L | Н | | Н | L | ### **ORDERING INFORMATION** See detailed ordering and shipping information on page 6 of this data sheet. **Table 1. MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |-------------------------------------|--|------------------------------|---|------| | V _{CC} | DC Supply Voltage | | -0.5 to +4.3 | ٧ | | V _{IN} | DC Input Voltage | | -0.5 to +4.3 | ٧ | | V _{OUT} | DC Output Voltage Active-Mode (High
Tri-State
Power-Down Mod | Mode (Note 1) | -0.5 to V _{CC} + 0.5
-0.5 to +4.3
-0.5 to +4.3 | V | | I _{IK} | DC Input Diode Current | V _{IN} < GND | -20 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < GND | -20 | mA | | I _{OUT} | DC Output Source/Sink Current | | ±20 | mA | | I _{CC or} I _{GND} | DC Supply Current Per Supply Pin or Ground Pin | | ±20 | mA | | T _{STG} | Storage Temperature Range | | −65 to +150 | °C | | T _L | Lead Temperature, 1 mm from Case for 10 Seconds | | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Note 2) | SC-88A
SOT-953
UDFN6 | 377
254
154 | °C/W | | P _D | Power Dissipation in Still Air at 85°C | SC-88A
SOT-953
UDFN6 | 332
491
812 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating Oxygen I | ndex: 28 to 34 | UL 94 V-0 @ 0.125 in | | | V _{ESD} | j , , | n Body Model
Device Model | 2000
1000 | V | | I _{LATCHUP} | Latchup Performance (Note 4) | | ±100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Applicable to devices with outputs that may be tri-stated. - Applicable to devices with outputs that may be the stated. Measured with minimum pad spacing on an FR4 board, using 10 mm by 1inch, 2 ounce copper trace no air flow per JESD51–7. HBM tested to EIA / JESD22–A114–A. CDM tested to JESD22–C101–A. JEDEC recommends that ESD qualification to EIA/JESD22–A115A (Machine Model) be discontinued. 4. Tested to EIA/JESD78 Class II. ### **Table 2. RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | Min | Max | Unit | |---------------------------------|------------------------------------|---|-------------|-------------------------------|------| | V _{CC} | Positive DC Supply Voltage | | 0.9 | 3.6 | V | | V _{IN} | Digital Input Voltage | | 0 | 3.6 | V | | V _{ОUТ} | Output Voltage | Active Mode (High or Low State)
Tri-State Mode (Note 1)
Power Down Mode (V_{CC} = 0 V) | 0
0
0 | V _{CC}
3.6
3.6 | V | | T _A | Operating Free-Air Temperature | | -55 | +125 | °C | | t _r , t _f | Input Transition Rise or Fall Rate | V_{CC} = 3.3 V \pm 0.3 V | 0 | 10 | nS/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. Table 3. DC ELECTRICAL CHARACTERISTICS | | | | | ٦ - | Γ _A = 25°0 | | T _A = -55°C | to +125°C | | |----------------------------------|------------------------------|--|---------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Тур | Max | Min | Max | Unit | | V _{IH} High-Level Input | | 0.9 | - | V_{CC} | _ | - | - | V | | | | Voltage | | 1.1 to 1.3 | 0.7 x V _{CC} | - | - | 0.7 x V _{CC} | - | | | | | | 1.4 to 1.6 | 0.65 x V _{CC} | - | - | 0.65 x V _{CC} | - | | | | | | 1.65 to 1.95 | 0.65 x V _{CC} | - | - | 0.65 x V _{CC} | - | | | | | | 2.3 to 2.7 | 1.7 | - | - | 1.7 | - | | | | | | 3.0 to 3.6 | 2.0 | - | - | 2.0 | - | | | V_{IL} | Low-Level Input | | 0.9 | - | GND | - | - | - | V | | | Voltage | | 1.1 to 1.3 | - | - | 0.3 x V _{CC} | - | 0.3 x V _{CC} | | | | | | 1.4 to 1.6 | - | - | 0.35 x V _{CC} | - | 0.35 x V _{CC} | | | | | | 1.65 to 1.95 | - | _ | 0.35 x V _{CC} | - | 0.35 x V _{CC} | | | | | | 2.3 to 2.7 | - | _ | 0.7 | - | 0.7 | | | | | | 3.0 to 3.6 | - | _ | 0.8 | - | 0.8 | | | V _{OH} | High-Level Output | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | V | | | Voltage | I _{OH} = -20 μA | 0.9 | - | 0.75 | - | - | - | | | | | I _{OH} = -0.3 mA | 1.1 to 1.3 | 0.75 x V _{CC} | - | - | 0.75 x V _{CC} | - | | | | | I _{OH} = −1.7 mA | 1.4 to 1.6 | 0.75 x V _{CC} | _ | - | 0.75 x V _{CC} | - | | | | | I _{OH} = −3.0 mA | 1.65 to 1.95 | V _{CC} – 0.45 | _ | - | V _{CC} – 0.45 | - | | | | | I _{OH} = -4.0 mA | 2.3 to 2.7 | 2.0 | _ | - | 2.0 | - | | | | | I _{OH} = -8.0 mA | 3.0 to 3.6 | 2.48 | _ | - | 2.48 | - | | | V _{OL} | Low-Level Output | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | V | | | Voltage | I _{OL} = 20 μA | 0.9 | - | 0.1 | - | - | - | | | | | I _{OL} = 0.3 mA | 1.1 to 1.3 | - | _ | 0.25 x V _{CC} | - | 0.25 x V _{CC} | | | | | I _{OL} = 1.7 mA | 1.4 to 1.6 | - | _ | 0.25 x V _{CC} | - | 0.25 x V _{CC} | | | | | I _{OL} = 3.0 mA | 1.65 to 1.95 | - | - | 0.45 | - | 0.45 | | | | | I _{OL} = 4.0 mA | 2.3 to 2.7 | - | - | 0.4 | - | 0.4 | | | | | I _{OL} = 8.0 mA | 2.7 to 3.6 | - | - | 0.4 | - | 0.4 | | | I _{IN} | Input Leakage
Current | V _{IN} = 0 V to 3.6 V | 0.9 to 3.6 | - | - | ±0.1 | - | ±1.0 | μΑ | | I _{OFF} | Power Off
Leakage Current | V _{IN} = 0 V to 3.6 V;
V _{OUT} = 0 V to 3.6 V | 0 | - | - | 1.0 | - | 10.0 | μΑ | | I _{CC} | Quiescent Supply
Current | V _{IN} = V _{CC} or GND | 0.9 to 3.6 | - | - | 1.0 | - | 10.0 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ### **AC ELECTRICAL CHARACTERISTICS** | Symbol | Parameter | Test Condition | V _{CC} (V) | , | T _A = 25° C | | T _A =
-55°C to +125°C | | | |--------------------|---|-------------------------|---------------------|-----|------------------------|------|-------------------------------------|------|------| | | | | | Min | Тур | Max | Min | Max | Unit | | t _{PLH} , | Propagation Delay, | C _L = 10 pF, | 0.9 | - | 39.8 | - | - | - | ns | | t _{PHL} | A to Y | $R_L = 1 M\Omega$ | 1.1 to 1.3 | - | 8.7 | 21.9 | - | 25.3 | 1 | | | | | 1.4 to 1.6 | - | 4.9 | 8.5 | - | 10.0 | 1 | | | | | 1.65 to 1.95 | - | 3.8 | 6.2 | - | 6.7 | 1 | | | | | 2.3 to 2.7 | - | 2.6 | 3.9 | - | 4.4 | 1 | | | | | 3.0 to 3.6 | - | 2.1 | 3.1 | - | 3.7 | 1 | | | | C _L = 15 pF, | 0.9 | - | 40.9 | - | - | - | ns | | | H _L | $R_L = 1 M\Omega$ | 1.1 to 1.3 | - | 8.9 | 22.6 | - | 26.1 | | | | | | 1.4 to 1.6 | - | 5.4 | 9.3 | - | 11.2 | | | | | | 1.65 to 1.95 | - | 4.2 | 6.9 | - | 7.1 | | | | | | 2.3 to 2.7 | - | 2.8 | 4.4 | - | 5.0 | 1 | | | | | 3.0 to 3.6 | - | 2.3 | 3.4 | - | 3.9 | 1 | | | | | 0.9 | - | 44.5 | - | - | - | ns | | | | | 1.1 to 1.3 | - | 9.5 | 24.6 | - | 28.3 | 1 | | | | | 1.4 to 1.6 | - | 7.4 | 13.1 | - | 15.9 | 1 | | | | | 1.65 to 1.95 | - | 5.6 | 9.2 | - | 9.6 | 1 | | | | | 2.3 to 2.7 | - | 3.7 | 5.7 | - | 6.1 | | | | | 3.0 to 3.6 | - | 2.9 | 4.4 | - | 4.8 | 1 | | | C _{IN} | Input Capacitance | | 0 to 3.6 | | 3 | - | - | - | pF | | C _{PD} | Power Dissipation
Capacitance (Note 5) | f = 10 MHz | 0.9 to 3.6 | - | 4 | - | - | - | pF | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$. | Test | Switch Position | |-------------------------------------|---------------------| | t _{PLH} / t _{PHL} | Open | | t _{PLZ} / t _{PZL} | 2 x V _{CC} | | t _{PHZ} / t _{PZH} | GND | C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 W) f=1~MHz Figure 5. Test Circuit Figure 6. Switching Waveforms | V _{CC} , V | V _{mi} , V | V _{mo} , V | V _Y , V | |---------------------|---------------------|---------------------|--------------------| | 0.9 | V _{CC} /2 | V _{CC} /2 | 0.1 | | 1.1 to 1.3 | V _{CC} /2 | V _{CC} /2 | 0.1 | | 1.4 to 1.6 | V _{CC} /2 | V _{CC} /2 | 0.1 | | 1.65 to 1.95 | V _{CC} /2 | V _{CC} /2 | 0.15 | | 2.3 to 2.7 | V _{CC} /2 | V _{CC} /2 | 0.15 | | 3.0 to 3.6 | 1.5 | 1.5 | 0.3 | ### **ORDERING INFORMATION** | Device | Marking | Pin 1 Orientation
(See below) | Package | Shipping [†] | |----------------|---------|----------------------------------|------------------|-----------------------| | NL17SG04DFT2G | AP | Q4 | SC-88A | 3000 / Tape & Reel | | NL17SG04P5T5G | V | Q2 | SOT-953 | 8000 / Tape & Reel | | NL17SG04MU1TCG | 4 | Q4 | UDFN6 1.45 x 1.0 | 3000 / Tape & Reel | | NL17SG04MU3TCG | TBD | Q4 | UDFN6 1.0 x 1.0 | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # PIN 1 ORIENTATION IN TAPE AND REEL Direction of Feed MiniGate is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ^{*-}Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable. ### SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M **DATE 11 APR 2023** ### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. 419A-01 DBSOLETE, NEW STANDARD 419A-02 - 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE. | DIM | MILLIMETERS | | | | |-------|-------------|------|------|--| | ואונת | MIN. | N□M. | MAX. | | | А | 0.80 | 0.95 | 1.10 | | | A1 | | | 0.10 | | | A3 | 0.20 REF | | | | | b | 0.10 | 0.20 | 0.30 | | | C | 0.10 | | 0.25 | | | D | 1.80 | 2.00 | 2,20 | | | Е | 2.00 | 2.10 | 2.20 | | | E1 | 1.15 | 1.25 | 1.35 | | | е | 0.65 BSC | | | | | L | 0.10 | 0.15 | 0.30 | | # E + E1 ◆ 0.2 M B M # RECOMMENDED MOUNTING FOOTPRINT For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. ### GENERIC MARKING DIAGRAM* *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. XXX = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location) | STYLE 1: | |-----------------------------| | PIN 1. BASE | | EMITTER | | 3. BASE | | COLLECTOR | | COLLECTOR | | | | YLE 2 | 2: | |-------|-----------| | IN 1. | ANODE | | 2. | EMITTER | | 3. | BASE | | 4. | COLLECTOR | | 5. | CATHODE | | | | STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1 STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2 STYLE 5: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4 STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. ### **DOCUMENT NUMBER:** 98ASB42984B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** 5. COLLECTOR 2/BASE 1 SC-88A (SC-70-5/SOT-353) PAGE 1 OF 1 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. 6X L 6X b 0.10 | C | A | B 0.05 C NOTE 3 UDFN6, 1.45x1.0, 0.5P CASE 517AQ **DATE 15 MAY 2008** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN | MAX | | | Α | 0.45 | 0.55 | | | A1 | 0.00 | 0.05 | | | A2 | 0.07 REF | | | | b | 0.20 | 0.30 | | | D | 1.45 BSC | | | | Е | 1.00 BSC | | | | Ф | 0.50 BSC | | | | J | 0.30 | 0.40 | | | L1 | | 0.15 | | ## **MOUNTING FOOTPRINT** **DIMENSIONS: MILLIMETERS** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **GENERIC MARKING DIAGRAM*** **BOTTOM VIEW** SIDE VIEW е = Specific Device Code = Date Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98AON30313E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-----------------------|---|-------------| | DESCRIPTION: | UDFN6, 1.45x1.0, 0.5P | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O** **DATE 18 MAY 2011** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. PACKAGE DIMENSIONS EXCLUSIVE OF - BURRS AND MOLD FLASH. | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN MAX | | | | Α | 0.45 | 0.55 | | | A1 | 0.00 | 0.05 | | | A3 | 0.13 REF | | | | b | 0.12 | 0.22 | | | D | 1.00 BSC | | | | E | 1.00 BSC | | | | е | 0.35 BSC | | | | L | 0.25 | 0.35 | | | L1 | 0.30 | 0.40 | | ### RECOMMENDED **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **GENERIC MARKING DIAGRAM*** X = Specific Device Code M = Date Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON56787E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------------|---|-------------| | DESCRIPTION: | UDFN6, 1x1, 0.35P | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ### SOT-953 1.00x0.80x0.37, 0.35P CASE 527AE **ISSUE F** **DATE 17 JAN 2024** MAX 0.40 0.20 0.17 1.05 0.85 1.05 ### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. - CONTROLLING DIMENSION: MILLIMETERS. - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. - 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MILLIMFTERS $N\square M$ 0.37 0.15 0.12 1.00 0.80 0.35 BSC 1.00 MIN 0.34 0.10 0.07 0.95 0.75 0.95 DIM Α b C \mathbb{D} E 9 Н # RECOMMENDED MOUNTING FOOTPRINT 0.350 *For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. ### **GENERIC MARKING DIAGRAM*** = Specific Device Code = Month Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON26457D | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED" | | |------------------|-------------------------------|--|-------------| | DESCRIPTION: | SOT-953 1.00x0.80x0.37, 0.35P | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales